Straining soft colloids in aqueous nematic liquid crystals.
نویسندگان
چکیده
Liquid crystals (LCs), because of their long-range molecular ordering, are anisotropic, elastic fluids. Herein, we report that elastic stresses imparted by nematic LCs can dynamically shape soft colloids and tune their physical properties. Specifically, we use giant unilamellar vesicles (GUVs) as soft colloids and explore the interplay of mechanical strain when the GUVs are confined within aqueous chromonic LC phases. Accompanying thermal quenching from isotropic to LC phases, we observe the elasticity of the LC phases to transform initially spherical GUVs (diameters of 2-50 µm) into two distinct populations of GUVs with spindle-like shapes and aspect ratios as large as 10. Large GUVs are strained to a small extent (R/r < 1.54, where R and r are the major and minor radii, respectively), consistent with an LC elasticity-induced expansion of lipid membrane surface area of up to 3% and conservation of the internal GUV volume. Small GUVs, in contrast, form highly elongated spindles (1.54 < R/r < 10) that arise from an efflux of LCs from the GUVs during the shape transformation, consistent with LC-induced straining of the membrane leading to transient membrane pore formation. A thermodynamic analysis of both populations of GUVs reveals that the final shapes adopted by these soft colloids are dominated by a competition between the LC elasticity and an energy (∼0.01 mN/m) associated with the GUV-LC interface. Overall, these results provide insight into the coupling of strain in soft materials and suggest previously unidentified designs of LC-based responsive and reconfigurable materials.
منابع مشابه
Shape-controlled orientation and assembly of colloids with sharp edges in nematic liquid crystals.
The assembly of colloids in nematic liquid crystals via topological defects has been extensively studied for spherical particles, and investigations of other colloid shapes have revealed a wide array of new assembly behaviors. We show, using Landau-de Gennes numerical modeling, that nematic defect configurations and colloidal assembly can be strongly influenced by fine details of colloid shape,...
متن کاملEffective triplet interactions in nematic colloids.
Three-body effective interactions emerging between parallel cylindrical rods immersed in a nematic liquid crystals are calculated within the Landau-de Gennes free-energy description. Collinear, equilateral and midplane configurations of the three colloidal particles are considered. In the last two cases the effective triplet interaction is of the same magnitude and range as the pair one.
متن کاملOriented monolayers prepared from lyotropic chromonic liquid crystal.
We use a layer-by layer electrostatic self-assembly technique to obtain in-plane oriented aggregates of mesogenic dye molecules cast from lyotropic chromonic liquid crystals (LCLCs) on mica substrates. The aqueous solutions of dye used for deposition are in the nematic phase. Atomic force microscopy and X-ray photoelectron spectroscopy of the dried film reveal that the LCLC molecules adsorb at ...
متن کاملConnecting and disconnecting nematic disclination lines in microfluidic channels.
Disclination lines in nematic liquid crystals can be used as "soft rails" for the transport of colloids or droplets through microfluidic channels [A. Sengupta, C. Bahr and S. Herminghaus, Soft Matter, 2013, 9, 7251]. In the present study we report on a method to connect and disconnect disclination lines in microfluidic channels using the interplay between anchoring, flow, and electric field. We...
متن کاملC3sm50468a 8107..8120
Spontaneous symmetry breaking while preserving flow ability is a remarkable feature of nematic liquid crystals. When a nematic liquid crystal coexists with a solid, the surface field of the solid tends to anchor the director direction on the surface: anchoring effects. If geometrical frustration between nematic ordering and anchoring is strong enough, stable topological defects are formed. Defe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 113 20 شماره
صفحات -
تاریخ انتشار 2016